

Transferência de calor: escoamento interno

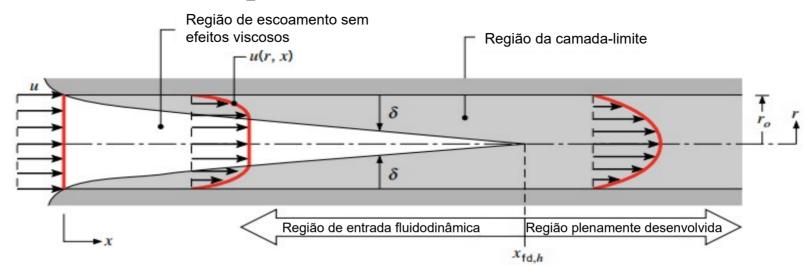
Prof. Alexei Essiptchouk

Dep. Engenharia Ambiental
Instituto de Ciência e Tecnologia
Universidade Estadual Paulista
"Júlio de Mesquita Filho"

Convecção no escoamento interno

- Escoamento interno no qual o fluído encontra-se confinado por uma superfície
- A camada limite se desenvolve tendo as restrições para seu desenvolvimento
- Estudamos somente casos
 - Baixas velocidades
 - Sem mudança de fase

Camada limite para escoamento em um tubo circular



- Desenvolvimento da camada limite à custa de encolhimento de escoamento não viscoso
- Termina com a fusão da camada limite no eixo central do tubo
- Após disso o perfil da velocidades não mais se altera escoamento *plenamente* desenvolvido
- Escoamento laminar perfil parabólico
- Escoamento turbulento perfil mais achatado

Comprimento de entrada

$$Re_D = \frac{\rho u_m D}{\mu} = \frac{u_m D}{V}$$

Número de Reynolds crítico

$$Re_{D,c} \approx 2300$$

Escoamento laminar

$$\left(\frac{X_{fd,h}}{D}\right)_{lam} \leq 0.05 \,\mathrm{Re}_D$$

Escoamento turbulento (independente do Re)

$$10 \le \left(\frac{X_{fd,h}}{D}\right)_{tur} \le 60$$

Velocidade média

Definição: a velocidade média é aquela que quando multiplicada pela área da secção transversal do tubo A_{tr} obtém-se a vazão mássica do escoamento

$$\dot{m} = \rho u_m A_{tr}$$

A vazão mássica pode ser representada pela integral do fluxo de massa (ρu)

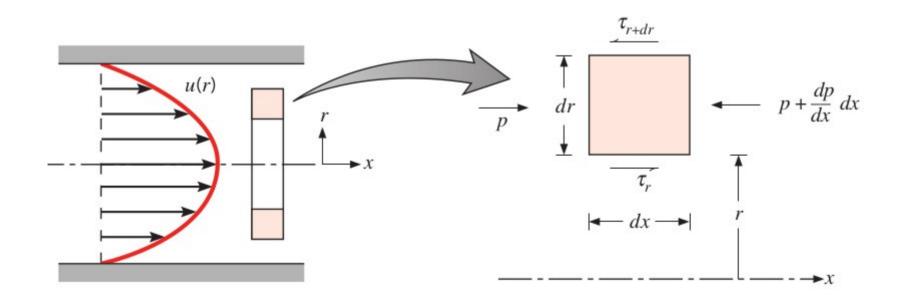
$$\dot{m} = \int_{A_{rr}} \rho u(r, x) dA_{tr}$$

Para escoamento incompressível num tubo circular

$$u_{m} = \frac{\int_{A_{tr}} \rho u(r,x) dA_{tr}}{\rho A_{tr}} = \frac{2\pi \rho}{\rho \pi r_{0}^{2}} \int_{0}^{r_{0}} u(r,x) r dr = \frac{2}{r_{0}^{2}} \int_{0}^{r_{0}} u(r,x) r dr$$

Perfil da velocidade

Escoamento laminar incompressível, na região plenamente desenvolvido de um tubo circular com velocidade radial *v* e velocidade axial *u*:



Perfil da velocidade

Conservação de momento

$$\tau_r(2\pi r dx) - \left(\tau_r(2\pi r dx) + \frac{d}{dr}[\tau_r(2\pi r dx)]dr\right) + p(2\pi r dr) - \left(p(2\pi r dr) + \frac{d}{dx}[p(2\pi r dr)]dx\right) = 0$$

$$-\frac{d}{dr}(\tau_r r) dx dr - r \frac{dp}{dx} dx dr = 0$$

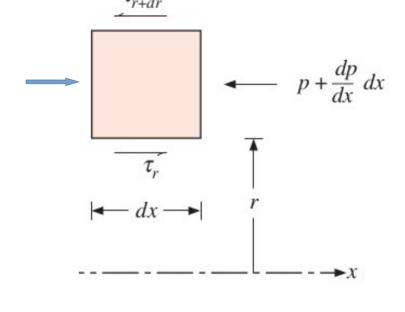
Integrando 2 vezes
$$u(r) = \frac{1}{u} \left(\frac{dp}{dx}\right) \frac{r^2}{4} + C_1 \ln r + C_2$$

CC:
$$u(r_0) = 0$$
 e $\frac{\partial u}{\partial x}$ = 0

$$=0$$

 $\tau_r = -\mu \frac{dv}{dr}$

$$u(r_0)=0 \text{ e } \frac{\partial u}{\partial x}\Big|_{r=0}=0 \qquad \frac{u(r)}{u_m}=2\left[1-\left(\frac{r}{r_0}\right)^2\right]$$



$$u_m = -\frac{r_0}{8 \,\mu} \frac{dp}{dx}$$

Gradiente de pressão e fator de atrito

Fator de atrito de Moody

$$f \equiv -\frac{\left(\frac{dp}{dx}\right)D}{\frac{\rho u_m^2}{2}}$$

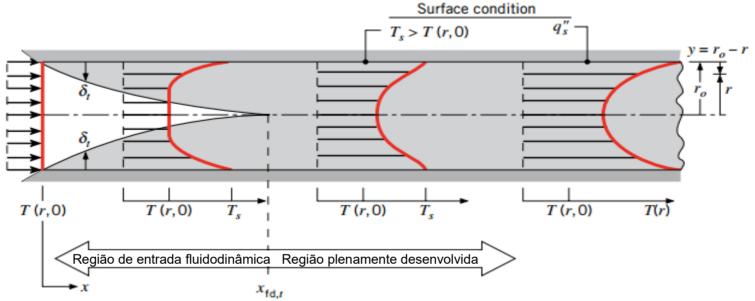
Regime laminar
$$f = \frac{64}{Re_{-}}$$

Regime turbulento
$$\frac{1}{\sqrt{f}} = -2\log(\frac{e/D}{3.7} + \frac{2.51}{\operatorname{Re}_D\sqrt{f}})$$

$$\Delta p = -\int_{p_1}^{p_2} dp = f \frac{\rho u_m^2}{2D} \int_{x_1}^{x_2} dx = f \frac{\rho u_m^2}{2D} (x_2 - x_1)$$

$$P = \Delta p G = \Delta p \frac{\dot{m}}{\rho}$$

Considerações térmicas



Camada limite hidrodinâmica e perfis da temperatura para condição T_s = const e q = const

No escoamento totalmente desenvolvido o perfil da temperatura (na forma adimensional) não depende do x

Escoamento laminar

 $\left(X_{fd,t}\right)$

Escoamento turbulento

Comprimento de entrada

$$\left(\frac{x_{fd,t}}{D}\right)_{lam} \leq 0.05 \operatorname{Re}_D \operatorname{Pr}$$

Temperatura média

Temperatura média é a temperatura de referência do fluido utilizada para a determinação da taxa de transferência de calor por convecção

$$T_{m} = \frac{\int_{A_{c}} \rho u c_{p} T dA_{c}}{\dot{m} c_{p}}$$

Para o fluxo incompressível num tubo circular $dA_c = 2 \pi r dr$

$$T_{m} = \frac{2\pi\rho c_{p}}{\rho\pi r_{0}^{2}u_{m}c_{p}} \int_{0}^{r_{0}} uTr dr = \frac{2}{u_{m}r_{0}^{2}} \int_{0}^{r_{0}} uTr dr$$

Onde
$$u_m$$
 é a velocidade média
$$u_m = \frac{\int_{A_c} \rho u(r,x) dA_c}{\rho A_c} = \frac{2\pi \rho}{\rho \pi r_0^2} \int_0^{r_0} u(r,x) r dr = \frac{2}{r_0^2} \int_0^{r_0} u(r,x) r dr$$

Importante observar $\dot{m} c_p T_m = q$

Lei de Newton

Taxa de transferência de calor por convecção

$$q_s'' = q_{conv}'' = h(T_s - T_m)$$

- \triangleright *h* é o coeficiente local de transferência de calor por convecção. É uma constante para as condições de escoamento completamente desenvolvido.
- T_s temperatura da superfície. Pode ser T_s = const ou T_s = var
- $racktriangleright T_m$ temperatura média. *Sempre varia no direção de escoamento e é diferente do conceito de T_m* = const

Escoamento completamente desenvolvido

O perfil da temperatura convenientemente representam na forma adimensional

$$\theta = \frac{T_s(x) - T(r, x)}{T_s(x) - T_m(x)}$$

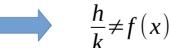
No escoamento termicamente completamente desenvolvido o formato relativo do perfil θ é independente de *x*. Matematicamente i.e.

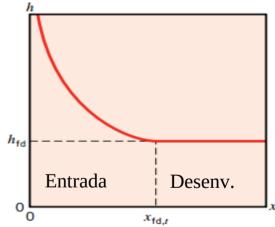
$$\frac{\partial \theta}{\partial x} = \frac{\partial}{\partial x} \left[\frac{T_s(x) - T(r, x)}{T_s(x) - T_m(x)} \right] = 0$$

Nessas condições a derivada radial também tem que ser independente de x. Para a superfície

$$\frac{\partial \theta}{\partial r}\Big|_{r=r_0} = \frac{\partial}{\partial r} \left(\frac{T_s(x) - T(r, x)}{T_s(x) - T_m(x)} \right) \Big|_{r=r_0} = \frac{-\frac{\partial T}{\partial r}\Big|_{r=r_0}}{T_s - T_m} \neq f(x)$$
Como $q_s'' = -k \frac{\partial T}{\partial r}\Big|_{r=r_0} = h(T_s - T_m)$ $\frac{h}{k} \neq f(x)$

Como
$$q_s'' = -k \frac{\partial T}{\partial r}\Big|_{r=r} = h(T_s - T_m)$$





Variação axial de coeficiente local de transferência de calor

No escoamento **completamente desenvolvido** *termicamente* de um fluido com propriedades constantes, **o coeficiente de transferência de calor é uma constante,** independente de *x*.

Escoamento completamente desenvolvido

Expandindo
$$\frac{\partial \theta}{\partial x}\Big|_{cd,t} = \frac{\partial \theta}{\partial T_s} \frac{dT_s}{dx}\Big|_{cd,t} + \frac{\partial \theta}{\partial T} \frac{dT}{dx}\Big|_{cd,t} + \frac{\partial \theta}{\partial T_m} \frac{dT_m}{dx}\Big|_{cd,t} = 0$$

Explicitando
$$\frac{dT}{dx}$$

$$\frac{dT}{dx}\Big|_{cd,t} = \frac{dT_s}{dx}\Big|_{cd,t} - \frac{T_s - T}{T_s - T_m} \frac{dT_s}{dx}\Big|_{cd,t} + \frac{T_s - T}{T_s - T_m} \frac{dT_m}{dx}\Big|_{cd,t}$$

Caso: fluxo térmico uniforme na superfície. q'' = const, h = const

$$q''_s = h(T_s - T_m)$$
 com $\frac{dT_s}{dx}\Big|_{cd,t} = \frac{dT_m}{dx}\Big|_{cd,t}$ obtemos $\frac{dT}{dx}\Big|_{cd,t} = \frac{dT_m}{dx}\Big|_{cd,t}$

Caso $T_s = \text{const}$ $\frac{dT_s}{dx}\Big|_{cd,t} = 0$ obtemos $\frac{dT}{dx}\Big|_{cd,t} = \frac{T_s - T_m}{T_s - T_m} \frac{dT_m}{dx}\Big|_{cd,t}$

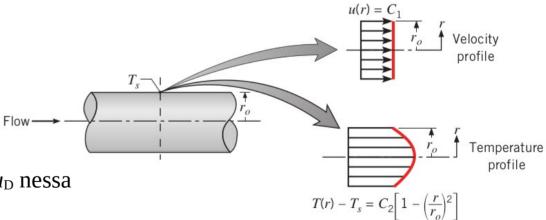
A temperatura média é um parâmetro muito importante. Para descrever escoamentos deve ser conhecida T(x) que pode ser obtida de um balanço de energia global

Exemplo

Para o escoamento de um metal líquido através de um tubo circular, os perfis de velocidades e de temperaturas, em uma dada posição axial, podem ser aproximados como uniforme e parabólico, respectivamente. Isto é,

$$u(r) = C_1$$
 e
 $T(r) - T_s = C_2[1 - (r/r_0)^2]$,
com C_1 e C_2 constantes.

Qual é o valor do número de Nusselt Nu_D nessa posição axial?



$$Nu_{D} = \frac{hD}{k}$$

$$h = \frac{q''_{s}}{T - T}$$

$$T_{m} = \frac{2}{u_{m} r_{0}^{2}} \int_{0}^{r_{0}} u(r) T(r) r dr$$

$$T_{m} = \frac{2C_{1}}{u_{m}r_{0}^{2}} \int_{0}^{r_{0}} \left(T_{s} + C_{2} \left[1 - \left(\frac{r}{r_{0}}\right)^{2}\right]\right) r dr$$

$$u_m = C_1$$

$$T_{m} = \frac{2}{r_{0}^{2}} \left(T_{s} \frac{r^{2}}{2} + C_{2} \frac{r^{2}}{2} - \frac{C_{2}}{4} \frac{r^{4}}{r_{0}^{2}} \right)_{0}^{r_{0}}$$

$$T_m = T_s + \frac{C_2}{2}$$

$$q_s'' = k \frac{\partial T}{\partial r} \Big|_{r=r_0} = -k C_2 2 \frac{r}{r_0^2} \Big|_{r=r_0} = -2 C_2 \frac{k}{r_0}$$

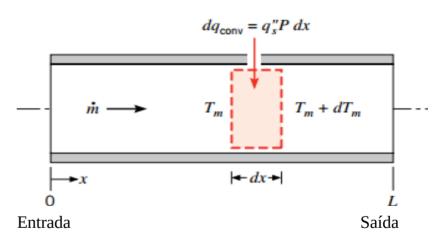
$$h = \frac{q''_s}{T_s - T_m} = \frac{-2C_2 \frac{k}{r_0}}{-\frac{C_2}{2}} = 4\frac{k}{r_0}$$

$$Nu_D = \frac{hD}{k} = \frac{(4k/r_0) \times 2r_0}{k} = 8$$

Balanços de energia para tubos

Balanço de energia é necessário para determinar variação $T_m(x)$ e como q_{conv} está relacionado com a diferença de temperaturas na entrada e saída do tubo

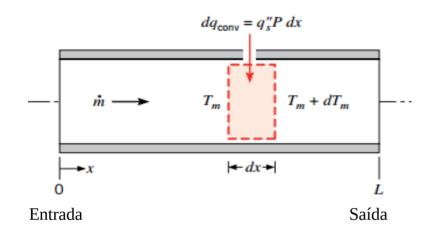
Suposições:



$$q_{conv} = \dot{m} c_p (T_{saida} - T_{entrada})$$

É uma expressão geral que se aplica independentemente da natureza das condições térmicas na superfície e no escoamento no tubo

Balanços de energia para tubos



Taxa real de advecção da energia térmica

$$dq_{conv} = \dot{m} c_p [(T_m + dT_m) - T_m] = \dot{m} c_p dT_m$$

Taxa de transferência de calor em termos de fluxo térmico na superfície

$$dq_{conv} = q_s' P dx = \dot{m} c_p dT_m$$

Variação axial da T_m

$$\frac{dT_m}{dx} = \frac{q_s''P}{\dot{m}c_p} = \frac{P}{\dot{m}c_p}h(T_s - T_m)$$

Se $T_s > T_m$ calor é transferido para o fluído e T_m aumenta com x;

Se $T_s < T_m$ ocorre oposto

Se T_s = const, T_m deve variar com x

CC: Fluxo térmico constante

Caso:
$$q_s' = const$$

$$\frac{dT_m}{dx} = \frac{q_s''P}{\dot{m}c_p} = \frac{P}{\dot{m}c_p}h(T_s - T_m)$$

$$\frac{dT_m}{dx} = \frac{q_s''}{\dot{m}c_p} = const$$

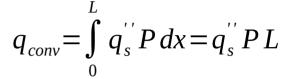
Integrando

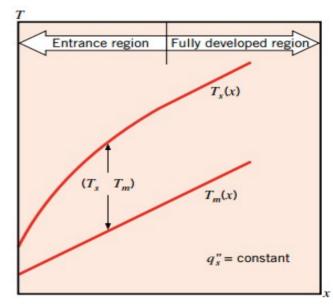
$$T_{m}(x) = T_{m,i} + \frac{q_{s}^{\prime\prime} P}{\dot{m} c_{p}} x$$

 T_m varia linearmente com x ao longo do tubo.

$$q_s'' = q_{conv}'' = h(T_s - T_m)$$

$$T_s = T_m + \frac{q_s'}{h}$$





 $T_s - T_m$ se aumenta com x devido a decréscimo do h, atingindo o valor máximo na região completamente desenvolvido

CC: Temperatura constante

Caso:
$$T_s = const$$

Caso:
$$T_s = const$$

$$\frac{dT_m}{dx} = \frac{q_s''P}{\dot{m}c_p} = \frac{P}{\dot{m}c_p}h(T_s - T_m)$$

Definimos
$$\Delta T = T_s - T_m$$

$$\frac{dT_m}{dx} = \frac{-d(\Delta T)}{dx} = \frac{P}{\dot{m} c_p} h \Delta T$$

Como
$$\frac{P}{\dot{m} c_p} = const \qquad \int_{\Delta T}^{\Delta T_o} \frac{d(\Delta T)}{\Delta T} = -\frac{P}{\dot{m} c_p} \int_{0}^{L} h \, dx$$

$$\int_{\Delta T_{i}} \overline{\Delta T} - \overline{m} \frac{1}{m} \frac{1}{c_{p}} \int_{0}^{H} dx$$

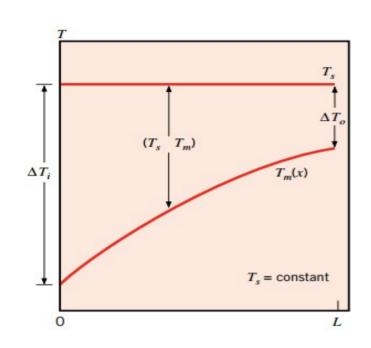
$$\ln \frac{\Delta T_{o}}{\Delta T_{i}} = -P \frac{L}{\dot{m} c_{p}} \left(\frac{1}{L} \int_{0}^{L} h \, dx \right) = -\frac{PL}{\dot{m} c_{p}} \overline{h}_{L}$$

Alternativamente

$$\frac{\Delta T_{o}}{\Delta T_{i}} = \frac{T_{s} - T_{m,o}}{T_{s} - T_{m,i}} = \exp\left(-\frac{PL}{\dot{m} c_{p}} \overline{h}_{L}\right)$$

 $T_s - T_{m,x}$ decai exponencialmente com x

CC: Temperatura constante



Taxa de transferência de calor

$$\begin{aligned} q_{conv} &= \dot{m} \, c_{\,p} (\, T_{\,m,o} - T_{\,m,i}) \\ q_{conv} &= \dot{m} \, c_{\,p} [\, (\, T_{\,s} - T_{\,m,i}) - (\, T_{\,s} - T_{\,m,o}) \,] \\ &= \dot{m} \, c_{\,p} (\, \Delta \, \, T_{\,i} - \Delta \, \, T_{\,o}) \end{aligned}$$

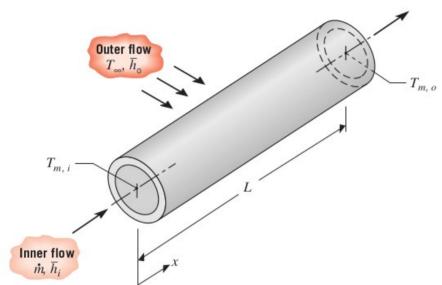
Lembrando

$$\ln \frac{\Delta T_o}{\Delta T_i} = -\frac{PL}{\dot{m} c_p} \bar{h}_L$$

$$q_{conv} = -\left(\frac{P L \bar{h}_L}{\ln \frac{\Delta T_o}{\Delta T_i}}\right) (\Delta T_i - \Delta T_o) = \bar{h}_L A_s \Delta T_{lm}$$
Forma de lei de Newton

$$\Delta T_{lm} = \frac{\Delta T_o - \Delta T_i}{\ln \frac{\Delta T_o}{\Delta T}}$$
 a média logarítmica da diferença de temperatura

CC: Temperatura constante do fluído externo



Caso a temperatura T_{∞} do fluído externo é especificada — substituímos T_s por T_{∞} e h médio por U médio

$$\frac{\Delta T_o}{\Delta T_i} = \frac{T_{\infty} - T_{m,o}}{T_{\infty} - T_{m,i}} = \exp\left(-\frac{\overline{U} A_s}{\dot{m} c_p}\right)$$

Taxa de transferência de calor

$$q_{conv} = \overline{U} A_s \Delta T_{lm}$$

Alternativamente

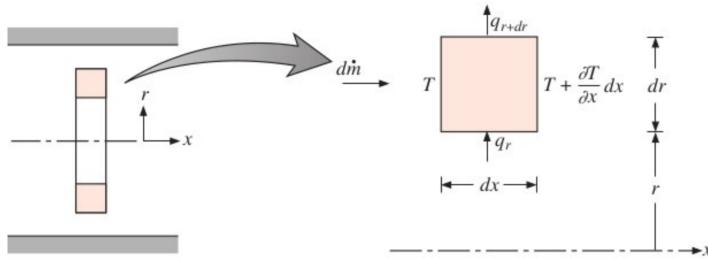
$$\frac{\Delta T_o}{\Delta T_i} = \frac{T_{\infty} - T_{m,o}}{T_{\infty} - T_{m,i}} = \exp\left(-\frac{1}{\dot{m} c_p R_{tot}}\right)$$

 $\overline{U} = \frac{1}{\frac{1}{h_1} + \frac{r_1}{k_2} \ln \frac{R_2}{r_1} + \frac{1}{h_2}}$

Coeficiente global por unidade de área

Para determinar *h* usamos a equação de energia térmica em escoamento. Suposições:

- Escoamento laminar
- Fluído incompressível
- Propriedades térmicas constantes
- Escoamento no região plenamente desenvolvida
- Tubo circular
- Desprezamos efeitos da condução axial
- Entrada de calor pela condução através da superfícies radiais



$$q_r - \left(q_r + \frac{\partial q_r}{\partial r} dr\right) = (d\dot{m})c_p \left[\left(T + \frac{\partial T}{\partial x} dx\right) - T\right]$$

$$-\frac{\partial q_r}{\partial r} dr = (d\dot{m}) c_p \frac{\partial T}{\partial x} dx$$

$$d \dot{m} = \rho u 2 \pi r dr$$

$$q_r = -k \frac{\partial T}{\partial r} 2 \pi r dx$$

$$u\frac{\partial T}{\partial x} = \frac{\alpha}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right)$$

$$\frac{u\frac{\partial T}{\partial x} = \frac{\alpha}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right)}{\frac{dT}{dx}\Big|_{cd,t}} = \frac{dT_m}{dx}\Big|_{cd,t} \qquad \frac{u(r)}{u_m} = 2\left[1 - \left(\frac{r}{r_0}\right)^2\right]$$

$$\frac{dT}{dx}\bigg|_{cd,t} = \frac{dT_m}{dx}\bigg|_{cd,t}$$

$$\frac{u(r)}{u_m} = 2 \left[1 - \left(\frac{r}{r_0} \right)^2 \right]$$

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) = \frac{2u_m}{\alpha} \frac{\partial T_m}{\partial x} \left[1 - \left(\frac{r}{r_0} \right)^2 \right]$$

Integrando 2 vezes

$$T(r,x) = \frac{2u_m}{\alpha} \frac{dT_m}{dx} \left[\frac{r^2}{4} - \frac{r^4}{16r_0^2} \right] + C_1 \ln r + C_2$$

Condição que a temperatura permanece finita em $r = 0 \rightarrow C_1 = 0$

Condição
$$T(r_0) = T_s \rightarrow C_2 = T_s(x) - \frac{2u_m}{\alpha} \frac{dT_m}{dx} \left(\frac{3r_0^2}{16} \right)$$

Perfil da temperatura na região plenamente desenvolvida

$$T(r,x) = T_s(x) - \frac{2u_m r_0^2}{\alpha} \frac{dT_m}{dx} \left[\frac{3}{16} + \frac{1}{16} \left(\frac{r}{r_0} \right)^4 - \frac{1}{4} \left(\frac{r}{r_0} \right)^2 \right]$$

A partir de conhecimento do perfil de temperaturas todos os demais parâmetros térmicos podem ser determinados.

A temperatura média

$$T_{m} = \frac{2}{u_{m} r_{0}^{2}} \int_{0}^{r_{0}} u T r dr \qquad \frac{u(r)}{u_{m}} = 2 \left[1 - \left(\frac{r}{r_{0}} \right)^{2} \right]$$

$$T_m(x) = T_s(x) - \frac{11}{48} \frac{u_m r_0^2}{\alpha} \frac{dT_m}{dx}$$

De outro lado

$$\frac{dT_m}{dx} = \frac{q_s''P}{\dot{m}c_p} = const \qquad P = \pi D \qquad \dot{m} = \rho u_m \frac{\pi D^2}{4}$$

$$P = \pi D$$

$$\dot{m} = \rho u_m \frac{\pi D^2}{4}$$

$$\frac{dT_{m}}{dx} = \frac{q_{s}''P}{\dot{m}c_{p}} = \frac{q_{s}''(\pi D)}{(\rho u_{m}\pi D^{2}/4)c_{p}} = \frac{4q_{s}''}{\rho u_{m}Dc_{p}} = const$$

Substituindo em
$$T_m(x) = T_s(x) - \frac{11}{48} \frac{u_m r_0^2}{\alpha} \frac{dT_m}{dx}$$
 $T_m(x) - T_s(x) = -\frac{11}{48} \frac{q_s^T D}{k}$

$$T_m(x) - T_s(x) = -\frac{11}{48} \frac{q_s L}{k}$$

Combinando com a lei de resfriamento de Newton

$$q''=h(T_s(x)-T_m(x))$$

$$h = \frac{48}{11} \frac{k}{D}$$

$$h = \frac{48}{11} \frac{k}{D}$$
 Nu_D = $\frac{hD}{k} = 4.36$

Similarmente para condição de **temperatura da superfície constante** $Nu_D = \frac{hD}{l} = 3,66$

$$Nu_D = \frac{hD}{k} = 3,66$$

Correlações de convecção para tubos

- Escoamento *laminar* completamente desenvolvido
 - Tubo circular, *fluxo uniforme* de calor na superfície

$$Nu_D = \frac{hD}{k} = 4,36$$

– Tubo circular, *temperatura* de superfície constante

$$Nu_D = \frac{hD}{k} = 3,66$$

Alguns tubos não circulares possuam números de Nusselt tabulados

		Nu_D	1		
Cross Section	$\frac{b}{a}$	(Uniform q'' _s)	(Uniform T_s)	Re_{D_h}	
		4.36	3.66	64	
a	1.0	3.61	2.98	57	
a	1.43	3.73	3.08	59	
<i>ab</i>	2.0	4.12	3.39	62	
a	3.0	4.79	3.96	69	
a	4.0	5.33	4.44	73	
ab	8.0	6.49	5.60	82	
	∞	8.23	7.54	96	
Heated ////////////////////////////////////	00	5.39	4.86	96	
\triangle	_	3.11	2.49	53	

W. M. Kays and M. E. Crawford, Convection Heat and Mass Transfer, 3rd ed. McGraw-Hill, New York, 1993.

Correlações de convecção para tubos

- Escoamento *turbulento* completamente desenvolvido num tubo circular, liso. Numero de Nusselt local
 - Correlação de Dittus-Boelter (variações T_s T_m pequenas e moderadas)

$$Re_{D} \ge 10.000$$

$$Nu_{D} = 0.023 Re_{D}^{4/5} Pr^{n}$$

$$0.6 < Pr < 160$$

$$\frac{L}{D} \ge 10$$

Aquecimento $(T_s > T_m)$ n=0.4, resfriamento n=0.3

- Correlação de Sieder-Tate (variações T_s - T_m elevadas)

$$Nu_{D} = 0.027 \operatorname{Re}_{D}^{4/5} \operatorname{Pr}^{1/3} \left(\frac{\mu}{\mu_{s}}\right)^{0.14} \qquad \begin{array}{c} \operatorname{Re}_{D} \geq 10.000 \\ 0.7 < \operatorname{Pr} < 10.700 \\ \underline{L} \geq 10 \end{array}$$

Correlações de convecção para tubos

Formulas anterior podem chegar aos erros até 25% que pode ser reduzido aplicando as formulas mais complexas

Gnielinski, para tubos lisos

$$Nu_{D} = \frac{hD}{k} = \frac{\frac{f}{8}(Re_{D} - 1000)Pr}{1 + 12.7\sqrt{\frac{f}{8}(Pr^{2/3} - 1)}}$$

$$3000 \le Re_{D} \le 2 \cdot 10^{6}$$

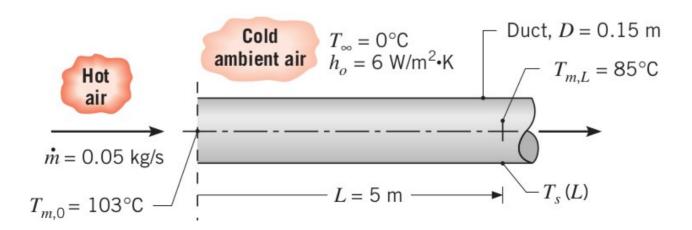
$$0,5 < Pr < 2000$$

f é o fator de atrito (diagrama de Moody) e as propriedades estimadas a T_m .

Exemplo

Ar quente escoa a uma vazão mássica de 0,05 kg/s um duto feito com uma folha metálica, sem isolamento térmico, com diâmetro D = 0,15 m, que se encontra no porão de uma casa. O ar quente entra a 103 °C e, após uma distância de L = 5 m, se resfria atingindo 85 °C. O coeficiente de transferência de calor entre a superfície externa do duto e o ar ambiente, a T_{∞} = 0 °C, é igual a $h_{\rm e}$ = 6 W/(m² K).

- 1. Calcule a taxa de perda de calor (W) no duto ao longo do comprimento L.
- 2. Determine o fluxo térmico e a temperatura na superfície do duto em x = L.



T (K)	$ ho (kg/m^3)$	$(\mathbf{k} \mathbf{J}/\mathbf{k} \mathbf{g} \cdot \mathbf{K})$	$\frac{\mu \cdot 10^7}{(\mathbf{N} \cdot \mathbf{s}/\mathbf{m}^2)}$	$ \frac{\nu \cdot 10^6}{(\text{m}^2/\text{s})} $	$\frac{k \cdot 10^3}{(W/m \cdot K)}$	$\frac{\alpha \cdot 10^6}{(\text{m}^2/\text{s})}$	Pr
Air, M	$= 28.97 \mathrm{kg/k}$	kmol					
100	3.5562	1.032	71.1	2.00	9.34	2.54	0.786
150	2.3364	1.012	103.4	4.426	13.8	5.84	0.758
200	1.7458	1.007	132.5	7.590	18.1	10.3	0.737
250	1.3947	1.006	159.6	11.44	22.3	15.9	0.720
300	1.1614	1.007	184.6	15.89	26.3	22.5	0.707
350	0.9950	1.009	208.2	20.92	30.0	29.9	0.700
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690
$T_{ m saida}$ =	$= 85^{\circ}C = 3$	$58 ext{K} ext{} T_{ ext{entr}}$	$_{\rm rada} = 103$ °C =	= 376K			

$$T_{\rm m} = 367{\rm K}$$

 $c_{\rm p}$ =1011

$$\frac{1.014 - 1.009}{50} \cdot 17 + 1.009 = 1.0107$$

T	ρ	c_p	$\mu \cdot 10^7$	$ u \cdot 10^6 $	$k \cdot 10^3$	$\alpha \cdot 10^6$	
(K)	(kg/m^3)	$(\mathbf{k} \mathbf{J}/\mathbf{kg} \cdot \mathbf{K})$	$(\mathbf{N} \cdot \mathbf{s}/\mathbf{m}^2)$	(m^2/s)	$(\mathbf{W}/\mathbf{m}\cdot\mathbf{K})$	(m^2/s)	Pr
Air, M	$= 28.97 \mathrm{kg/k}$	kmol					
100	3.5562	1.032	71.1	2.00	9.34	2.54	0.786
150	2.3364	1.012	103.4	4.426	13.8	5.84	0.758
200	1.7458	1.007	132.5	7.590	18.1	10.3	0.737
250	1.3947	1.006	159.6	11.44	22.3	15.9	0.720
300	1.1614	1.007	184.6	15.89	26.3	22.5	0.707
350	0.9950	1.009	208.2	20.92	30.0	29.9	0.700
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690
$T_{ m saida}$ =	= 85°C = 3	58K					
		33.	$8 - 30 \cdot 8 + 30 = 3$	0 608			
k=0,	0306		50	.000			
$\mu = 2$	11,7×10 ⁻⁷	230.	$\frac{1-208.2}{50} \cdot 8 + 20$	08.2 = 211.70) 4		
Pr = 0	0,698		$0 - 0.7 \cdot 8 + 0.7 = 0.7$	=0.6984			

38/41

A perda do calor ao longo do comprimento *L*.

$$q = \dot{m} c_p (T_{m,L} - T_{m,0}) = 0.05 \times 1011 (85 - 103) = -910 \text{ W}$$

O fluxo térmico em x = L é composto da convexão no interior e exterior do tubo

$$q''_{s}(L) \xrightarrow{T_{m,L}} T_{s}(L) \xrightarrow{T_{\infty}} Q''_{s} = \frac{T_{m,L} - T_{\infty}}{\frac{1}{h_{s}(L)} + \frac{1}{h_{e}}}$$

Coeficiente convectivo interno varia ao longo do tubo (!)

$$Nu_D = \frac{h_x(L)D}{k} = 0,023 \text{ Re}_D^{4/5} \text{Pr}^{0.3}$$
 $Re = \frac{4\dot{m}}{\pi D\mu}$ $h_x(L) = Nu_D \frac{k}{D}$

$$T_{s,L} = T_{m,L} - \frac{q_s}{h_x(L)}$$

T C	T K	ρ Kg/m³	ς _₿ KJ/(kg K)	μ×10 ⁷ N s/m ²	$v \times 10^6$ m^2/s	K×10 ³ W/(m K)	$\frac{\alpha \times 10^6}{\text{m}^2/\text{s}}$	Pr
85	358	0.975	1009.8	2.12E-05	2.18E-05	0.0306	1.56E-05	0.6984
103	376						I I	
	367		1010.7				1	
							1	
	m=	0.05		Re=	20047		İ	
	d=	0.15		Nu=	57		I I	
	he=	6		hx(L)=	11.65		I I	
				q=	337		1	
				Ţş=	56	С	İ	

Exemplo

Um produto alimentício líquido é processado em um esterilizador de fluxo contínuo. O líquido entra no esterilizador a uma temperatura e a uma vazão de $T_{m.ent.h}$ = 20 °C e m = 1 kg/s, respectivamente. Restrições:

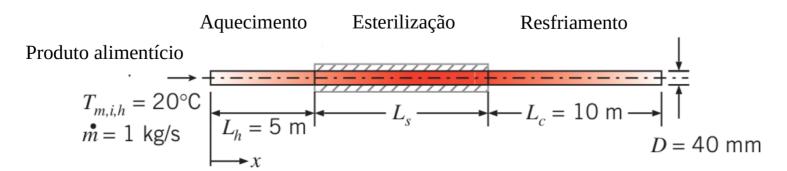
- Para matar bactérias o produto deve ser mantido a uma temperatura média de $T_{\rm m}$ = 90 °C por 10 s
- A temperatura local do produto não pode exceder $T_{\text{máx}}$ = 230 °C, de modo a preservar um gosto agradável.

Primeira seção de aquecimento, $L_1 = 5$ m, com um fluxo térmico uniforme,

Seção intermediária de esterilização isolada termicamente

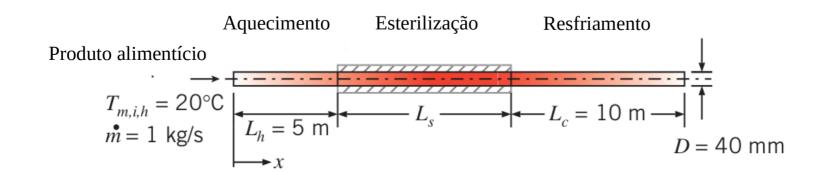
Terceira seção de resfriamento, L = 10 m, de um tubo não isolado exposto a um ambiente, sem vento, a T = 20 °C.

O tubo do esterilizador tem parede delgada com diâmetro D = 40 mm. As propriedades do alimento são similares às da água líquida a T = 330 K



Exemplo

- 1. Qual fluxo térmico é necessário na seção de aquecimento para garantir uma temperatura média do produto máxima de T = 90 °C?
- 2. Determine a localização é o valor da temperatura local do produto máxima. A segunda restrição é satisfeita?
- 3. Determine o comprimento mínimo da seção de esterilização necessário para satisfazer a restrição tempo-temperatura.
- 4. Esboce a distribuição axial das temperaturas média, na superfície e na linha central, da entrada da seção de aquecimento até a saída da seção de resfriamento.



1. Qual fluxo térmico é necessário na seção de aquecimento para garantir uma temperatura média do produto máxima de T = 90 °C?

$$T_m = \frac{20+90}{2} + 273 = 328 K \approx 330$$

					Thermal Conductivity						
	Specific Volume (m3/kg)		Specific Heat (kJ/kg K)		Viscosity (N s/m2)		(W/m K)		Prandtl Number		
T, K	v _f 1e3	V_{g}	$C_{p,f}$	$C_{\mathbf{p},\mathbf{g}}$	μ _f 1e6	μ _g 1e6	k _f 1e3	k_g 1e3	Pr_f	Pr_{g}	
273.15	1	206.3	4.217	1.854	1750	8.02	569	18.2	12.99	0.815	
275	1	181.7	4.211	1.855	1652	8.09	574	18.3	12.22	0.817	
280	1	130.4	4.198	1.858	1422	8.29	582	18.6	10.26	0.825	
285	1	99.4	4.189	1.861	1225	8.49	590	18.9	8.81	0.833	
290	1.001	69.7	4.184	1.864	1080	8.69	598	19.3	7.56	0.841	
295	1.002	51.94	4.181	1.868	959	8.89	606	19.5	6.62	0.849	
300	1.003	39.13	4.179	1.872	855	9.09	613	19.6	5.83	0.857	
305	1.005	29.74	4.178	1.877	769	9.29	620	20.1	5.2	0.865	
310	1.007	22.93	4.178	1.882	695	9.49	628	20.4	4.62	0.873	
315	1.009	17.82	4.179	1.888	631	9.69	634	20.7	4.16	0.883	
320	1.011	13.98	4.18	1.895	577	9.89	640	21	3.77	0.894	
325	1.013	11.06	4.182	1.903	528	10.09	645	21.3	3.42	0.901	
330	1.016	8.82	4.184	1.911	489	10.29	650	21.7	3.15	0.908	

$$q = q'' \pi D L_h = \dot{m} c_p (T_{saida} - T_{entrada})$$

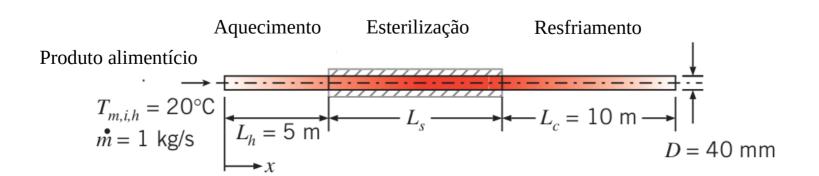
$$q' = \frac{\dot{m} c_p (T_{saida} - T_{entrada})}{\pi D L} = \frac{1 \times 4184 (90 - 20)}{3.14 \times 0.04 \times 5} = 466 \text{ kW/m}^2$$

2. Determine a localização é o valor da temperatura local do produto máxima. A segunda restrição é satisfeita?

A maior temperatura é a temperatura da parede na secção com maior temperatura média, i.e. t =90°C

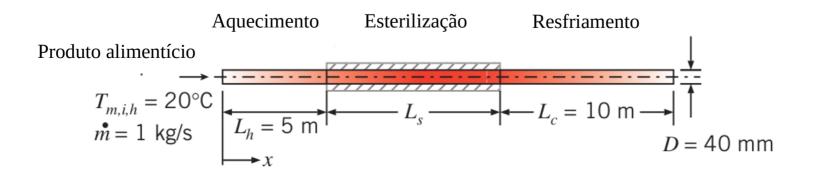
$$T_{s,L} = T_{m,L} + \frac{q''}{h}$$
 $h = \frac{k}{D} 0,023 \text{ Re}_D^{4/5} \text{Pr}^{0.4}$ $\text{Re}_D = \frac{4 \dot{m}}{\pi D \mu}$

$$Re_D = 65090$$
 $h = 4190 \text{ W/m}^2 K$ $T_{s,L} = 201 \text{ C} < 230 \text{ C}$



3. Determine o comprimento mínimo da seção de esterilização necessário para satisfazer a restrição tempo-temperatura.

$$L_s = ut = \frac{4\dot{m}}{0\pi D^2}t = \frac{4\times1}{984\times3.14\times0.04^2}10 = 8.1 \text{ m}$$



4. Esboce a distribuição axial das temperaturas média, na superfície e na linha central, da entrada da seção de aquecimento até a saída da seção de resfriamento.

