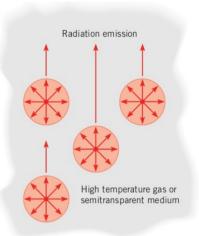


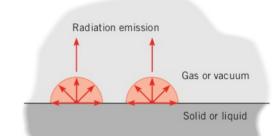
Transferência de calor por radiação

Prof. Alexei Essiptchouk

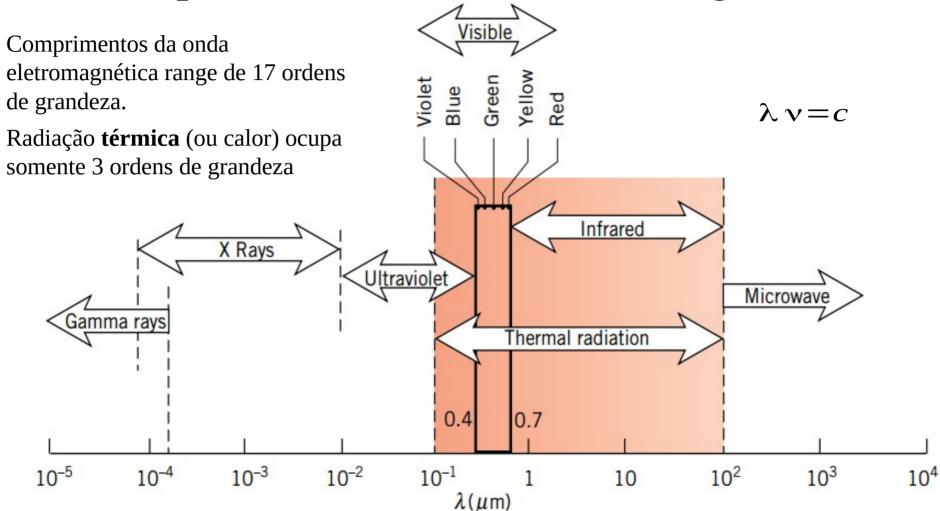
Dep. Engenharia Ambiental
Instituto de Ciência e Tecnologia
Universidade Estadual Paulista
"Júlio de Mesquita Filho"


Introdução

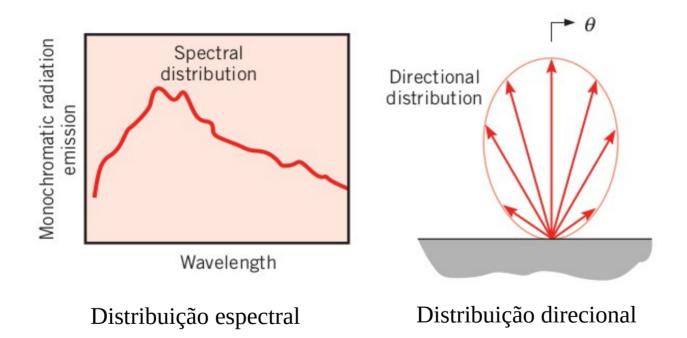
 Radiação, no contexto de transmissão de calor, consiste no transporte de energia por meio das ondas eletromagnéticas (OE) com a energia


$$E = h \frac{c}{\lambda} = h v$$

- OE propagam-se no vácuo à velocidade da luz 2,998× 10⁸ m/s
- Radiação não necessita de um meio para transferência
- Todos os corpos a temperatura T > 0 K emitem radiação
- Radiação térmica ($0,1 \mu m < \lambda < 100 \mu m$) inclui uma fração da ultravioleta (UV), toda radiação visível e o infravermelha (IV)



Emissão volumétrica



Emissão superficial

Espectro de radiação eletromagnética

Distribuição da radiação

A magnitude de radiação varia com comprimento da onda e seu direção. Depende da temperatura e natureza da superfície.

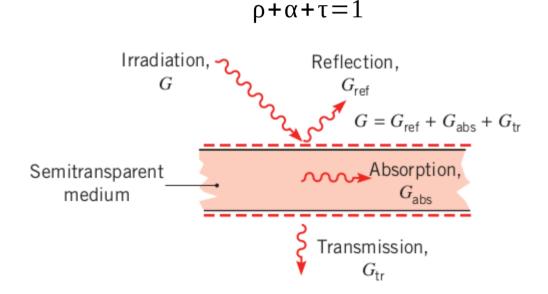
• **Poder emissivo,** E, taxa no qual **radiação é emitida** de uma superfície por unidade de área $E = a \propto T^4$

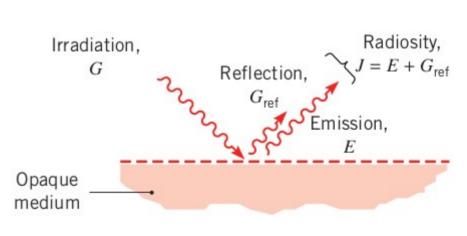
$$E = \varepsilon \sigma T_s^4$$

- **Irradiação,** *G*, taxa na qual **radiação incide** sobre uma superfície por unidade de área
 - Caso: radiação difusa G_d + radiação direta G_D , segundo um ângulo θ com a normal à superfície

$$G = G_d + G_D \cos(\theta)$$

- A radiação incidente pode ser
 - absorvida,
 - refletida e
 - transmitida


$$G = G_{abs} + G_{ref} + G_{tran}$$


$$1 = G_{abs}/G + G_{ref}/G + G_{tran}/G$$

Definição:

Refletividade, ρ, é uma fração da irradiação refletida **Absortividade**, α, é uma fração da irradiação absorvida **Transmissividade**, τ, é uma fração da irradiação transmitida

 $\rho + \alpha = 1$

Meio opaco: $\tau = 0$

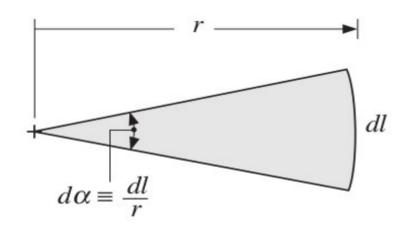
Radiosidade, *J*, leva em conta **toda** a energia radiante deixando a superfície

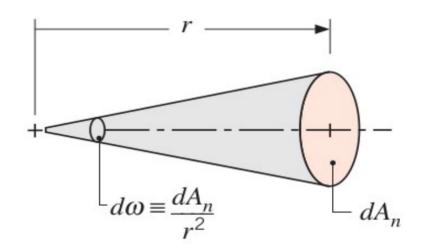
$$J = E + G_{ref} = E + \rho G$$

Fluxo radiante líquido saindo da superfície é a **diferença** entre as radiações saindo e entrando

$$q''_{\rm rad} = J - G$$

$$q''_{\rm rad} = E + \rho G - G = \varepsilon \sigma T_s^4 - \alpha G$$

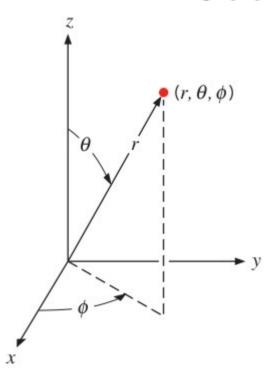

Grandezas E, G e J são geralmente usadas para determinar $q_{
m rad}$


Poder Emissivo, E	Taxa na qual radiação é emitida de uma superfície por unidade de área	$E = \varepsilon \sigma T_s^4$
Irradiação, G	Taxa na qual radiação incide sobre uma superfície por unidade de área	Irradiação pode se refletida, absorvida ou transmitida
Radiosidade, J	Taxa na qual radiação deixa uma superfície por unidade de área	Para uma superfície opaca $J = E + \rho G$
Fluxo radiante líquido	Taxa líquida de radiação deixando uma superfície por unidade de área	Para uma superfície opaca $q_{rad}^{''} = \varepsilon \sigma T_s^4 + \alpha G$

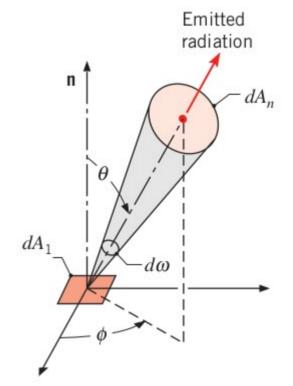
Intensidade de radiação

- A radiação que deixa a superfície pode se propagar em todas as direções possíveis
- A radiação que incide sobre uma superfície pode vir de diferentes direções
- A maneira como a superfície responde a radiação incidente depende da direção

Definição: ângulo plano e sólido



Ângulo plano


Ângulo sólido

Coordenadas esféricas

 θ – ângulo de zênite

 ϕ – ângulo azimutal

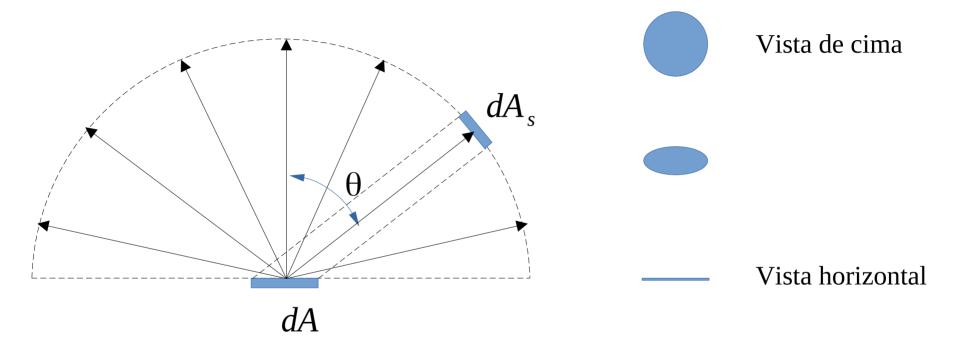
Emissão da radiação a partir de uma área diferencial dA_1 para um ângulo sólido $d\omega$ subtendido por dA_n em um ponto sobre dA_1 .

Diferencial do ângulo sólido

$$d\omega = \frac{dA_n}{r^2}$$

$$dA_n = r d\theta \times r \sin(\theta) d\phi$$

$$d\omega = \sin(\theta) d\theta d\phi$$


$$d\omega = \sin(\theta) d\theta d\phi$$

$$d\omega = \frac{dA_n}{r^2}$$

De uma superfície opaca a radiação pode ser emitida por um hemisfério hipotético sobre a superfície. O ângulo sólido associado ao hemisfério

$$\int_{b} d\omega = \int_{0}^{2\pi} \int_{0}^{\pi/2} \sin\theta \ d\theta \ d\phi = 2\pi \int_{0}^{\pi/2} \sin\theta \ d\theta = 2\pi \operatorname{sr}$$

Intensidade de radiação

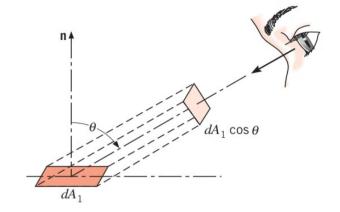
A taxa na qual a energia é emitida em qualquer direção a partir do elemento difuso *dA* é proporcional à área projetada de *dA* para a direção normal de visão

$$dA_s = dA \cos(\theta)$$

Intensidade de radiação

Intensidade espectral, $I_{\lambda,e}$ é a taxa na qual a energia radiante é emitida no comprimento de onda λ na direção (θ, ϕ) ,

- por unidade de área da superfície emissora normal a essa direção,
- por unidade de ângulo sólido entorno dessa direção e
- por unidade de intervalo de comprimento de onda d λ no entorno de λ .


$$I_{\lambda,e}(\lambda, \theta, \phi) \equiv \frac{dq}{dA_1 \cos \theta \cdot d\omega \cdot d\lambda}$$

$$dq_{\lambda} = I_{\lambda,e}(\lambda, \theta, \phi) dA_1 \cos \theta \ d\omega$$

Por unidade de área e utilizando $d \omega = \sin(\theta) d\theta d\phi$

$$dq''_{\lambda} = I_{\lambda,e}(\lambda, \theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi$$

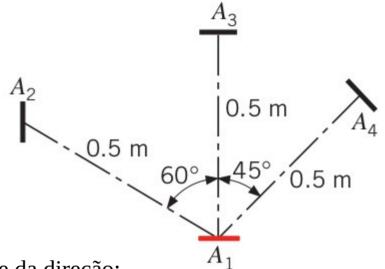
Poder emissivo

Poder emissivo hemisférico espectral, E_{λ} é a taxa na qual a radiação de comprimento de onda λ é emitida em todas as direções a partir de uma superfície por unidade de intervalo de comprimentos de onda d λ no entorno de λ e por unidade de área superficial

$$E_{\lambda}(\lambda) = q''(\lambda) = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,e}(\lambda,\theta,\phi) \cos\theta \sin\theta \, d\theta \, d\phi$$

Poder emissivo hemisférico total, $E(W/m^2)$ $E = \int_{0}^{\infty} E_{\lambda}(\lambda) d\lambda$

$$E = \int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,e}(\lambda, \theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi \, d\lambda$$

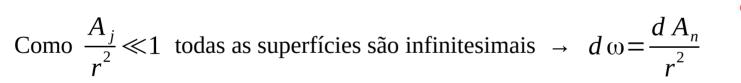

Para emissor difuso $E_{\lambda}(\lambda) = \pi I_{\lambda,e}(\lambda)$

De maneira análoga $E = \pi I_e$ I_e – intensidade total da radiação emitida

Problema

Um emissor difuso de área A_1 = 10^{-3} m² emite com a intensidade I_n =7000 W/(m² sr). A radiação é interceptada por 3 superfícies com áreas A_2 = A_3 = A_4 = A_1 distantes de 0,5 m de A_1 .

• Qual é a intensidade associada a emissão em cada uma das três direções?


Emissor é **difuso** → a intensidade de radiação é independente da direção:

$$I = 7000 \text{ W/(m}^2 \text{ sr})$$

Problema

Um emissor difuso de área $A_1 = 10^{-3}$ m² emite com a intensidade I_n =7000 W/(m² sr). A radiação é interceptada A_{2n} = A_2 cos 30 por 3 superfícies com áreas A_1 = A_2 = A_3 que distant 0.5. A_3 por 3 superfícies com áreas $A_2 = A_3 = A_4 = A_1$ que distam 0,5 $A_2 = A_3 = A_4 = A_1$ m de A_1 .

• Quais são os ângulos sólidos correspondentes às três superfícies?

 A_n - projeção da superfície normal a direção da radiação

$$\omega_2 = \frac{A_2 \cos 30^{\circ}}{r^2} = \frac{10^{-3} \times \cos 30^{\circ}}{0.5^2} = 3.46 \times 10^{-3} \text{ sr}$$
 $\omega_3 = \omega_4 = \frac{A_3}{r^2} = \frac{10^{-3}}{0.5^2} = 4 \times 10^{-3} \text{ sr}$

$$\omega_3 = \omega_4 = \frac{A_3}{r^2} = \frac{10^{-3}}{0.5^2} = 4 \times 10^{-3} \text{ s}$$

Problema

Um emissor difuso de área $A_1=10^{-3}$ m² emite com a intensidade I_n =7000 W/(m² sr). A radiação é interceptada por 3 superfícies com áreas $A_2 = A_3 = A_4 = A_1$ que distam 0,5 m de A_1 .

• Quais são as taxas nas quais a radiação emitida por A_1 é interceptada pelas todas as superfícies?

$$A_{2}$$

$$0.5 \text{ m}$$

$$60^{\circ}$$

$$d \omega_{i} = I A_{1} \cos \theta_{i} \omega_{i}$$

$$\times 10^{-3} \text{ W}$$

$$\times 10^{-3} \text{ W}$$

$$q_{1-i} = \int dq_{1-i} = \int I dA_i \cos \theta_i d\omega_i = I A_1 \cos \theta_i \omega_i$$

$$q_{1-2} = 7000 \times 10^{-3} \times \cos(60^\circ) \times 3,46 \times 10^{-3} = 12,1 \times 10^{-3} \text{ W}$$

$$q_{1-3} = 7000 \times 10^{-3} \times \cos(0^\circ) \times 4,00 \times 10^{-3} = 28,0 \times 10^{-3} \text{ W}$$

$$q_{1-3} = 7000 \times 10^{-3} \times \cos(45^\circ) \times 4,00 \times 10^{-3} = 10,9 \times 10^{-3} \text{ W}$$

$$q_{1-4} = 7000 \times 10^{-3} \times \cos(45^{\circ}) \times 4,00 \times 10^{-3} = 19,8 \times 10^{-3} \text{ W}$$

Embora a intensidade *I* é independente da direção, as taxas nas quais a radiação é interceptada pelas superfícies diferem significativamente devido às diferenças nos **ângulos sólidos** e **áreas projetadas**.

Irradiação

Irradiação espectral

$$G_{\lambda}(\lambda) = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,i}(\lambda,\theta,\phi) \cos\theta \sin\theta \, d\theta \, d\phi$$

Irradiação total

$$G = \int_{0}^{\infty} G_{\lambda}(\lambda) d\lambda$$

$$G = \int_{0}^{\infty} \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,i}(\lambda,\theta,\phi) \cos\theta \sin\theta d\theta d\phi d\lambda$$

Caso irradiação difusa

$$G_{\lambda}(\lambda) = \pi I_{\lambda,i}(\lambda)$$

$$G = \pi I_i$$

Radiosidade para superfície opaca

Radiosidade espectral

$$J_{\lambda}(\lambda) = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,e+r}(\lambda,\theta,\phi) \cos\theta \sin\theta \, d\theta \, d\phi$$

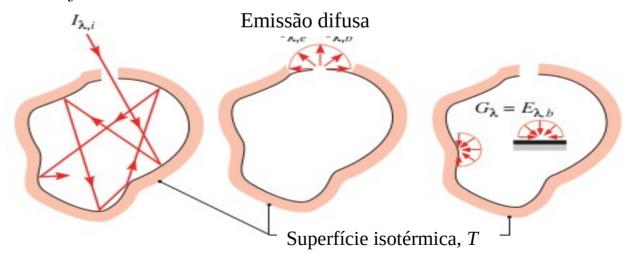
Radiosidade total
$$J = \int_{0}^{\infty} J_{\lambda}(\lambda) d\lambda$$
$$J = \int_{0}^{\infty} \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,e+r}(\lambda,\theta,\phi) \cos\theta \sin\theta d\theta d\phi d\lambda$$

Caso refletor e emissor difuso

$$J_{\lambda}(\lambda) = \pi I_{\lambda,e+r}(\lambda)$$
$$J = \pi I_{e+r}$$

Fluxo radiante líquido para superfície opaca

Fluxo radiante líquido é a diferença entre a radiosidade que sai J e a irradiação que chega G


$$q_{\text{rad}}'' = \int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,e+r}(\lambda, \theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi \, d\lambda$$
$$-\int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,i}(\lambda, \theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi \, d\lambda$$

Corpo negro

Corpo negro - CN

- Absorve toda a radiação incidente, independente do seu comprimento de onda e sua direção
- Para uma dada T e λ nenhuma superfície pode emitir mais energia do que um CN
- Embora a radiação emitida por CN seja uma função do *λ* e *T*, ela é independente da direção, i.e. CN é um *emissor difuso*

Cavidade – uma aproximação do CN

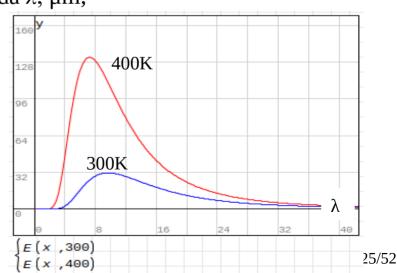
Absorção completa

Emissão difusa a partir de uma abertura

Irradiação difusa nas superfícies interiores

Emissão do corpo negro

Distribuição do Planck


$$E_{\lambda,cn} = \frac{C_1}{\lambda^5 \left(e^{\frac{C_2}{\lambda T}} - 1 \right)}$$

$$C_1 = 2\pi h c^2 = 3,742 \times 10^8 \ W \cdot \mu m^4 / m^2$$

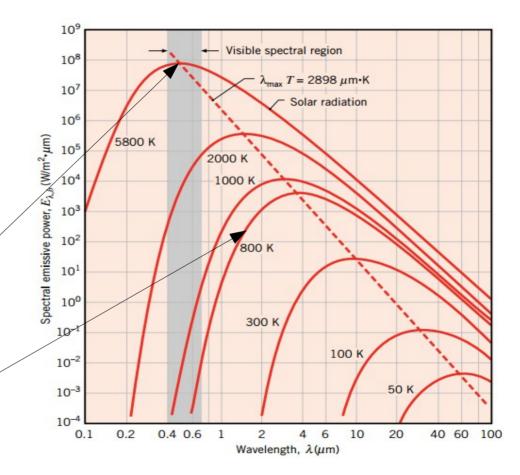
 $C_2 = \frac{h c}{k_B} = 1,439 \times 10^4 \ \mu m K$
 $h = 6,625 \times 10^{-34} \ Js \ k_B = 1,381 \times 10^{-23} \ J/K$

 $E_{\lambda,\text{cn}}$ – poder emissivo espectral, W/(m²µm), é radiação emitida por unidade de tempo, de área e de comprimento de onda em torno do comprimento de onda λ , µm;

Características importantes da distribuição de Planck

- Radiação emitida varia *continuamente* com λ ;
- Para qualquer λ , o poder emissivo $E_{\lambda,cn}$ aumenta com a temperatura
- A região espectral no qual a radiação está concentrada depende da *temperatura*
- Com aumento em T, comparativamente mais radiação aparece nas menores λ

Lei do deslocamento de Wien


A energia espectral emitida por um CN a temperatura T é máxima para

$$\lambda_{max} = \frac{2897.8}{T}$$
 Lei de Wien

Com aumento em T o máximo do $E_{\lambda,\mathrm{CN}}$ se desloca para λ mais curtos

Radiação solar pode ser aproximado por um CN a 5800K com maior emissão na região do visível no espectro

Para um corpo a *T* < 800K a emissão predominante se encontra na região infravermelho, não visível

Lei de Stefan-Boltzmann

Poder emissivo total pode ser obtido pela integração do poder emissivo espectral

$$E_{cn} = \int_{0}^{\infty} E_{\lambda,cn}(T) d\lambda = \int_{0}^{\infty} \frac{C_{1}}{\lambda^{5} \left(e^{\frac{C_{2}}{\lambda T}} - 1\right)} d\lambda = \frac{2\pi^{5} k^{4} T^{4}}{15c^{2} h^{3}} = \sigma T^{4}$$

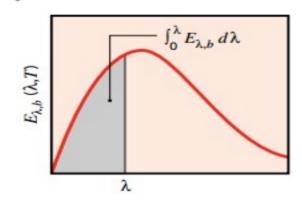
https://www.wolframalpha.com $\int_0^\infty \frac{c1}{x^5 \left(e^{c2/x} - 1\right)} dx = \frac{\pi^4 c1}{15 c2^4} \text{ for } Re(c2) > 0$

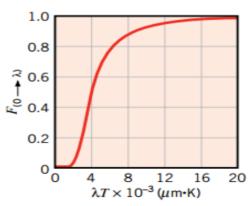
 E_{cn} – poder emissivo total de um corpo negro, W/m², é uma taxa na qual a radiação é emitida de uma superfície em todos os comprimentos da onda e direções;

 σ – constante de Stefan-Boltzmann – 5.6×10⁻⁸ W/(m² K⁴);

T – temperatura absoluta do corpo emissor, K.

$$E_{cn} = \sigma T^4$$


Determina a quantidade de radiação emitida em todas as direções e ao longo de todos os comprimentos de onda a partir do conhecimento da temperatura do corpo negro

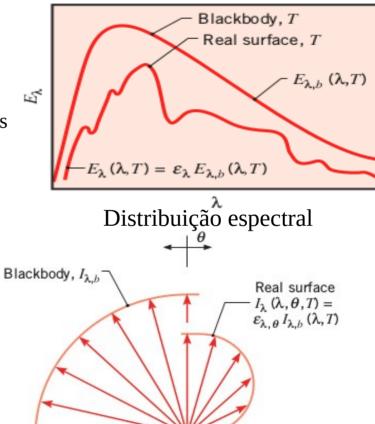

Emissão em um banda

Banda é um certo intervalo de comprimentos de onda

A **função de radiação** - fração de energia radiada pelo corpo negro na região espectral $[0, \lambda]$

$$F_{(0\to\lambda)} = \frac{\int_0^{\lambda} E_{\lambda,b} d\lambda}{\int_0^{\infty} E_{\lambda,b} d\lambda} = \frac{\int_0^{\lambda} E_{\lambda,b} d\lambda}{\sigma T^4} = \int_0^{\lambda T} \frac{E_{\lambda,b}}{\sigma T^5} d(\lambda T) = f(\lambda T)$$
 Está tabelada.

A energia radiada por um CN na região espectral $[\lambda_1, \lambda_2]$ $F_{\lambda_1 \to \lambda_2} = F_{0 \to \lambda_2} - F_{0 \to \lambda_2}$


$$F_{\lambda_1 \to \lambda_2} = F_{0 \to \lambda_2} - F_{0 \to \lambda_1}$$

λT ($\mu m \cdot K$)	$F_{(0 o \lambda)}$	λT $(\mu m \cdot K)$	$F_{(0 o\lambda)}$	λT $(\mu m \cdot K)$	$F_{(0 \to \lambda)}$
200	0,000000	4.000	0,480877	8.000	0,856288
400	0,000000	4.200	0,516014	8.500	0,874608
600	0,000000	4.400	0,548796	9.000	0,890029
800	0,000016	4.600	0,579280	9.500	0,903085
1.000	0,000321	4.800	0,607559	10.000	0,914199
1.200	0,002134	5.000	0,633747	10.500	0,923710
1.400	0,007790	5.200	0,658970	11.000	0,931890
1.600	0,019718	5.400	0,680360	11.500	0,939959
1.800	0,039341	5.600	0,701046	12.000	0,945098
2.000	0,066728	5.800	0,720158	13.000	0,955139
2,200	0,100888	6.000	0,737818	14.000	0,962898
2.400	0,140256	6.200	0,754140	15.000	0,969981
2.600	0,183120	6.400	0,769234	18.000	0,980860
2.800	0,227897	6.600	0,783199	20.000	0,985602
2.898	0,250108	6.800	0,796129	25.000	0,992215
3.000	0,273232	7.000	0,808109	30.000	0,995340
3.200	0,318102	7.200	0,819217	40.000	0,997967
3.400	0,361735	7.400	0,829527	50.000	0,998953
3.600	0,403607	7.600	0,839102	75.000	0,999713
3.800	0,443382	7.800	0,848005	100.000	0,999905

Propriedades radiantes das superfícies reais

- Em geral as propriedades de radiação e sua interação com a matéria são complexas
 - Dependem da temperatura da fonte de radiação
 - Dependem da superfície receptora
 - Dependem da direção
- Para simplificar e tornar tratáveis os problemas usam aproximações
 - Radiação difusa radiação independente da direção
 - Emissividade total ε razão entre a radiação total emitida por uma superfície real e a radiação de CN à mesma temperatura
 - Emissividade **espectral** $ε_λ$ relação $E_λ(T)/E_{cn,λ}(T)$ para um dado comprimento de onda

$$\varepsilon(T) = \frac{E(T)}{E_{cn}(T)}$$

Distribuição direcional

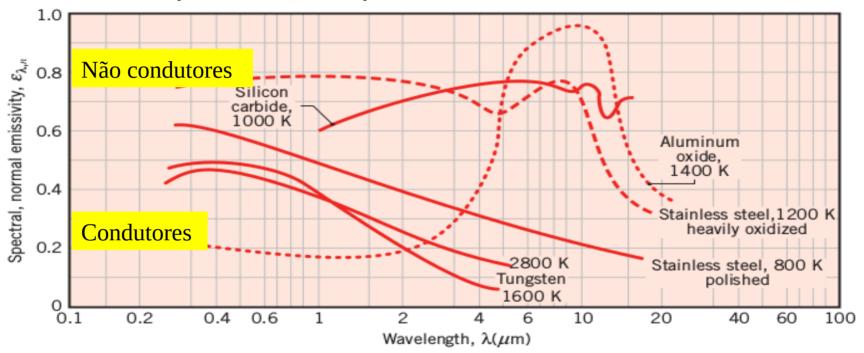
Emissividade de superficies reais

Emissividade direcional espectral

$$\varepsilon_{\lambda,\theta}(\lambda,\theta,\phi,T) \equiv \frac{I_{\lambda,e}(\lambda,\theta,\phi,T)}{I_{\lambda,b}(\lambda,T)}$$

Emissividade direcional total

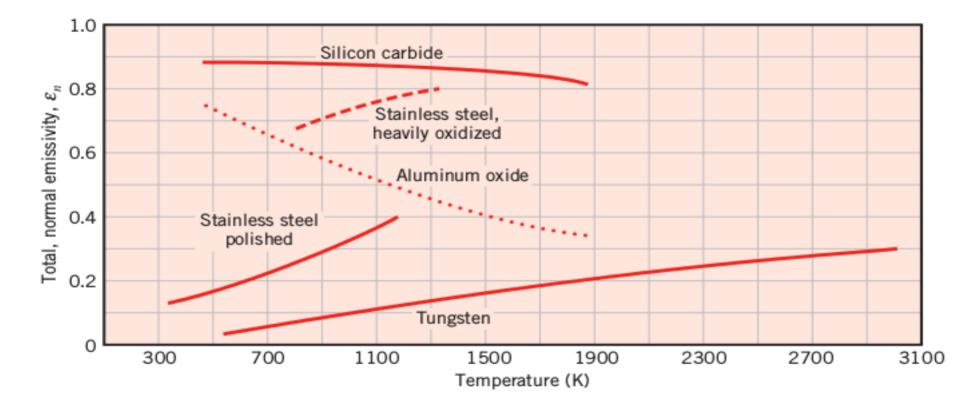
$$\varepsilon_{\theta}(\theta, \phi, T) \equiv \frac{I_e(\theta, \phi, T)}{I_b(T)}$$


Emissividade hemisférica espectral

$$\varepsilon_{\lambda}(\lambda, T) \equiv \frac{E_{\lambda}(\lambda, T)}{E_{\lambda, b}(\lambda, T)}$$

Emissividade hemisférica total

$$\varepsilon(T) = \frac{\int_0^\infty \varepsilon_{\lambda}(\lambda, T) E_{\lambda, b}(\lambda, T) \ d\lambda}{E_b(T)}$$


Dependência espectral da emissividade normal ao superfície, $\varepsilon_{\lambda n}$, para diferentes materiais

Variação com comprimento de onda

Superfícies metálicas (condutores), possuam geralmente $\varepsilon_{\lambda n}$ pequena em comparação com as oxidadas (não condutores)

Dependência com a temperatura da emissividade normal

Variação com temperatura

A emissividade de condutores aumenta com a temperatura enquanto a dos não condutores pode tanto aumentar como diminuir com T.

Absortividade de superfícies reais

Absortividade direcional espectral é uma fração da intensidade espectral incidente na direção

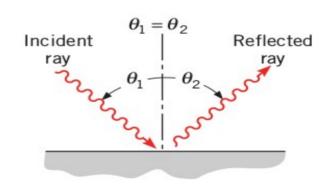
 θ e ϕ que é absorvida pela superfície

$$\alpha_{\lambda,\theta}(\lambda,\theta,\phi) \equiv \frac{I_{\lambda,i,abs}(\lambda,\theta,\phi)}{I_{\lambda,i}(\lambda,\theta,\phi)}$$

Para a maioria dos problemas as propriedades superficiais apresentam um valor médio e usa-se uma **absortividade hemisférica espectral**

$$\alpha_{\lambda}(\lambda) \equiv \frac{G_{\lambda, \text{abs}}(\lambda)}{G_{\lambda}(\lambda)}$$

Absortividade hemisférica total


$$\alpha \equiv \frac{G_{\mathrm{abs}}}{G}$$

Tipos de reflexão

- **Difusa** espalhada igualmente em todas as direções. Az vezes se trata como se fosse absorvida e reemitida a partir da superfície
- **Especular** o ângulo de reflexão é igual ao ângulo de incidência (espelho)

Reflexão difusa

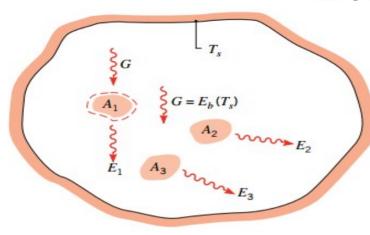
Reflexão especular

Superfícies polidas e espelhadas tendem a refletir de forma especular, enquanto superfícies rugosas refletem de maneira difusa. Para a maioria das aplicações de engenharia, a reflexão difusa é uma suposição razoável.

Refletividade de superficies reais

Refletividade direcional espectral é uma fração da intensidade espectral incidente na direção θ e ϕ que é absorvida pela superfície

$$\rho_{\lambda,\theta}(\lambda,\theta,\phi) \equiv \frac{I_{\lambda,i,\text{ref}}(\lambda,\theta,\phi)}{I_{\lambda,i}(\lambda,\theta,\phi)}$$


Para a maioria dos problemas as propriedades superficiais apresentam um valor médio e usa-se uma **absortividade hemisférica espectral**

$$\rho_{\lambda}(\lambda) \equiv \frac{G_{\lambda, \text{ref}}(\lambda)}{G_{\lambda}(\lambda)}$$

Emissividade hemisférica total

$$\rho \equiv \frac{G_{\rm ref}}{G}$$

Lei de Kirchhoff

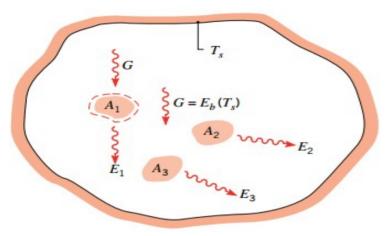
Suposições preliminares:

- Um grande recinto isotérmico
- Temperatura superficial T_s
- Corpos pequenos confinados A_1 , A_2 e A_3 (no campo de radiação sua influência é desprezível)

Cavidade se comporta como um CN: Irradiação = Poder emissivo $G = E_{CN}(T_s)$

A irradiação G é difusa (espalhada igualmente em todas as direções). No regime estacionário

$$T_1 = T_2 = \dots = T_s$$


Balanço de energia para o corpo 1

$$\alpha_1 G A_1 - E_1(T_s) A_1 = 0$$

$$\frac{E_1(T_s)}{\alpha_1} = G = E_{CN}(T_s)$$

$$\frac{E_1(T_s)}{\alpha_1} = \frac{E_2(T_s)}{\alpha_2} = \dots = E_{CN}(T_s)$$

Lei de Kirchhoff

$$\frac{E_1(T_s)}{\alpha_1} = \frac{E_2(T_s)}{\alpha_2} = \dots = E_{CN}(T_s)$$

Como
$$\alpha \le 1 \rightarrow E_i(T_i) \le E_{CN}(T)$$

Nenhuma superfície pode ter um poder emissivo superior àquele de uma superfície de corpo negro à mesma temperatura

Forma alternativa da lei de Kirchhoff

$$\frac{\varepsilon_1}{\alpha_1} = \frac{\varepsilon_1}{\alpha_2} = \dots = 1$$

$$\varepsilon_i = \alpha_i$$

Lei de Kirchhoff

A **emissividade** total, ε, de uma superfície é determinada apenas pelas propriedades físicas e temperatura **DESSA** superfície.

$$\varepsilon(T) = \frac{E(T)}{E_{cn}(T)}$$

A **absortividade** total, α , depende:

- da **FONTE(S)** de radiação (como está distribuída nos comprimentos de onda, que depende da temperatura e propriedades da superfície(s) da(s) fonte(s)) e
- das próprias **características da superfície RECEPTORA** (pode absorver alguns comprimentos de onda melhor do que outros).

A absortividade total α , portanto, depende das propriedades físicas e temperaturas de todos os corpos envolvidos no processo de troca de calor.

A lei de Kirchhoff é uma expressão que permite determinar α sob certas restrições.

Lei de Kirchhoff

$$\frac{E_1(T_s)}{\alpha_1} = \frac{E_2(T_s)}{\alpha_2} = \dots = E_{cn}(T_s)$$

$$\frac{\varepsilon_1}{\alpha_1} = \frac{\varepsilon_1}{\alpha_2} = \dots = 1$$

Em condições determinadas a absortividade é igual à emissividade

$$\varepsilon = \alpha$$

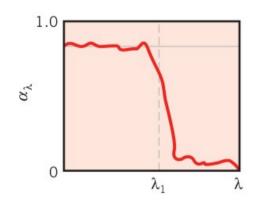
$$\epsilon_{\lambda\theta}(T) = \alpha_{\lambda\theta}(T)$$

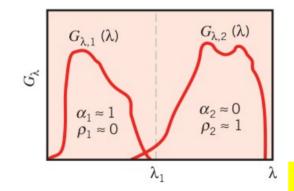
 $\varepsilon_{\lambda \theta}(T) = \alpha_{\lambda \theta}(T)$ • Coeficientes espectrais/directionais: sempre aplicável

$$\varepsilon_{\lambda}(T) = \alpha_{\lambda}(T)$$

 $\varepsilon_{\lambda}(T) = \alpha_{\lambda}(T)$ • Coeficientes espectrais: irradiação difusa ou superfície difusa

$$\epsilon(T) = \alpha(T)$$


 $\epsilon(T) = \alpha(T)$ • Coeficientes totais: condições isotérmicas e não haja transferência de calor radiante líquida em qualquer superfície


Emissividade ε depende essencialmente da *temperatura da superfície emissora* enquanto a **absortividade** α sobretudo depende da **temperatura da fonte de radiação**.

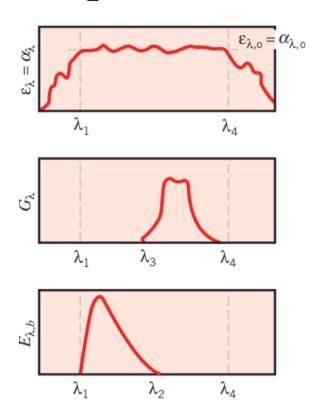
Exemplo: camada fina de crómio negro α =0,87 para radiação solar (λ ~0.5 µm) enquanto ε =0.09 para temperatura ambiental (λ ~8 μ m)

Propriedades radiantes das superfícies reais

Superfície **cinza**: emissividade e absortividade espectrais (ε_{λ} =const, α_{λ} =const) são independentes de comprimento de onda

 α depende de λ enquanto ε é independente da irradiação

Não há base para estabelecer que sempre


$$\varepsilon = \alpha$$

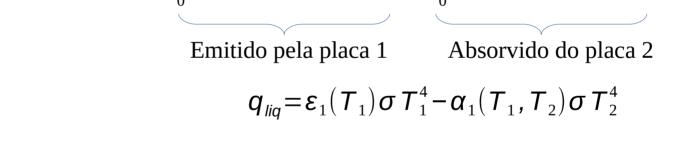
Para diferentes campos de irradiação G_1 e G_2 a superfície pode ter valores α bem diferentes

$$\varepsilon \neq \alpha$$

Superficie cinza pode ser definida como uma superficie para a qual ε_{λ} e α_{λ} são independentes de λ *nas regiões espectrais* da irradiação e da emissão superficial.

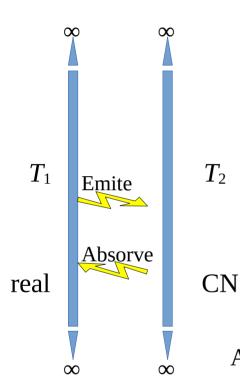
Propriedades radiantes das superfícies reais

Para irradiação na região espectral $\lambda_1 < \lambda < \lambda_4 a$ superfície pode ser suposta cinza

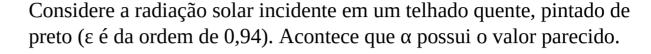

A superfície para qual $\varepsilon_{\lambda,\theta} = \alpha_{\lambda,\theta}$ é conhecida como *superfície cinza difusa* Cinza pois $\neq f(\lambda)$ e difusa pois $\neq f(\theta)$

Exemplo

Duas placas infinitas (uma real e outra corpo negro) com temperaturas T_1 e T_2 . A transferência líquida de calor da placa 1 para a placa 2 é a diferença


entre o calor que a placa 1 emite e o que absorve

$$q_{liq} = \int_{0}^{\infty} \varepsilon_{1\lambda}(T_1) E_{CN}(T_1) d\lambda - \int_{0}^{\infty} \alpha_{1\lambda}(T_1) E_{CN}(T_2) d\lambda$$
Emitido pela placa 1 Absorvido do placa 2
$$\alpha_{II} = \varepsilon_{I}(T_1) \sigma T_1^4 - \alpha_{I}(T_1, T_2) \sigma T_2^4$$


Absortividade α_1 depende de T_1 e T_2 .

- A dependência de T_1 : pois $\alpha_{1\lambda}$ é uma propriedade da placa 1 que pode depender da temperatura.
- A dependência de T_2 : pois o espectro de radiação da placa 2 depende da temperatura da placa 2 de acordo com a lei de Planck.

Exemplo

O telhado branco mantém praticamente o mesmo valor de emissividade (ε) , mas reflete intensamente a luz solar nos comprimentos de onda visíveis. De fato, 80 a 90% da luz do sol é refletida, tornando-o eficiente na redução do aquecimento.



A absorção de luz solar por tinta branca é de apenas 0,1 a 0,2 – bem menor do que ε para a energia que emite, que ocorre principalmente em comprimentos de onda infravermelhos.

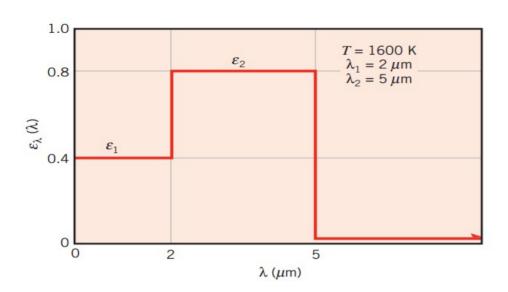
Para ambas tintas se aplica $\varepsilon_{\lambda}(T) = \alpha_{\lambda}(T)$.

No entanto, a equação $\varepsilon(T) = \alpha(T)$ só é correto para a tinta preta.

Uma superfície difusa a 1600 K possui a emissividade espectral mostrada.

Determinar e emissividade total e o poder emissivo total.

Em qual comprimento de onda o poder emissivo espectral atinge o seu máximo?


$$\varepsilon = \frac{\int\limits_{0}^{\infty} \varepsilon_{\lambda} E_{\lambda,CN} d\lambda}{E_{CN}} = \frac{\varepsilon_{1} \int\limits_{0}^{2} E_{\lambda,CN} d\lambda}{E_{CN}} + \frac{\varepsilon_{2} \int\limits_{2}^{5} E_{\lambda,CN} d\lambda}{E_{CN}} = \varepsilon_{1} F_{0 \to 2\mu m} + \varepsilon_{2} (F_{0 \to 5\mu m} - F_{0 \to 2\mu m})$$
Aplicamos a **função de radiação** que é a fração de energia radiada por CN
$$F_{0 \to \lambda} = \frac{\int\limits_{0}^{\lambda} E_{\lambda,CN} d\lambda}{\int\limits_{0}^{\infty} E_{\lambda,CN} d\lambda}$$

$$F_{0 \to \lambda} = \int_{0}^{\Lambda} E_{\lambda, CN} d\lambda$$

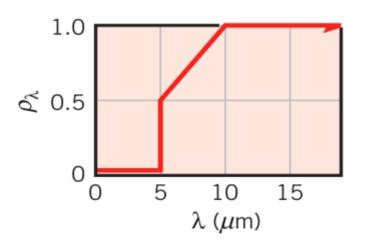
Para determinar *F* calculamos: $\lambda_1 T = 2 \times 1600 = 3200$ $\lambda_2 T = 5 \times 1600 = 8000$ (em µm K)_{51/52}

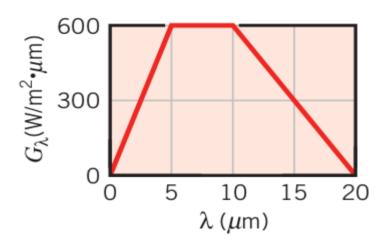
λT ($\mu m \cdot K$)	$F_{(0 o\lambda)}$	λT $(\mu \mathbf{m} \cdot \mathbf{K})$	$F_{(0 o \lambda)}$	λT $(\mu \mathbf{m} \cdot \mathbf{K})$	$F_{(0 o \lambda)}$
200	0,000000	4.000	0,480877	8.000	0,856288
400	0,000000	4.200	0,516014	8.500	0,874608
600	0,000000	4.400	0,548796	9.000	0,890029
800	0,000016	4.600	0,579280	9.500	0,903085
1.000	0,000321	4.800	0,607559	10.000	0,914199
1.200	0,002134	5.000	0,633747	10.500	0,923710
1.400	0,007790	5.200	0,658970	11.000	0,931890
1.600	0,019718	5.400	0,680360	11.500	0,939959
1.800	0,039341	5.600	0,701046	12.000	0,945098
2.000	0,066728	5.800	0,720158	13.000	0,955139
2,200	0,100888	6.000	0,737818	14.000	0,962898
2.400	0,140256	6.200	0,754140	15.000	0,969981
2.600	0,183120	6.400	0,769234	18.000	0,980860
2.800	0,227897	6.600	0,783199	20.000	0,985602
2.898	0,250108	6.800	0,796129	25.000	0,992215
3.000	0.273232	7.000	0,808109	30.000	0,995340
3.200	0,318102	7.200	0,819217	40.000	0,997967
3.400	0,361735	7.400	0,829527	50.000	0,998953
3.600	0,403607	7.600	0,839102	75.000	0,999713
3.800	0,443382	7.800	0,848005	100.000	0,999905

Uma superfície difusa a 1600 K possui a emissividade espectral mostrada.

Determinar e emissividade total e o poder emissivo total.

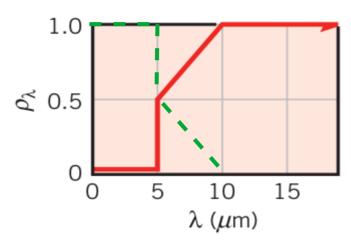
Em qual comprimento de onda o poder emissivo espectral atinge o seu máximo?

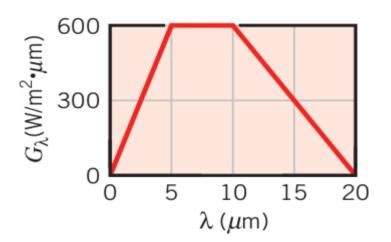

Emissividade total:


$$\varepsilon = \varepsilon_1 F_{0 \to 2\mu m} + \varepsilon_2 (F_{0 \to 5\mu m} - F_{0 \to 2\mu m}) = 0.4 \times 0.318 + 0.8 (0.856 - 0.318) = 0.558$$

Poder emissivo total, kW/m²: $E = \varepsilon \sigma T^4 = 0.558 \times 5.67 \times 10^{-8} \times 1600^4 = 207$

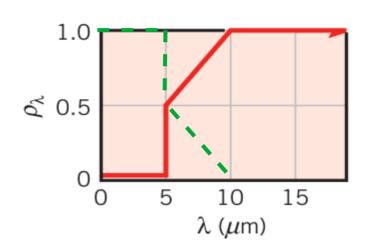
Comprimento de onda (lei de Wien) para máximo
$$E$$
, μ m: $\lambda_{max} = \frac{2898}{T} = \frac{2898}{1600} = 1,81$

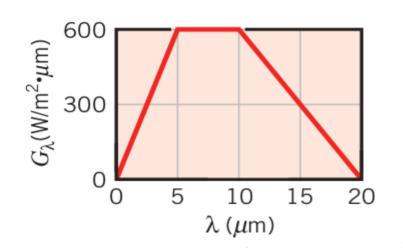




Uma superfície opaca com a distribuição da refletividade espectral dada está sujeita à irradiação espectral ilustrada conforme a figura

- Esboçar a distribuição espectral de absortividade
- Determinar a irradiação total sobre a superfície
- Determinar o fluxo radiante que é absorvido pela superfície
- Determinar o valor da absortividade total dessa superfície


A distribuição espectral de absortividade: $\tau = 0$ $\alpha = 1 - \rho$


Irradiação total:

$$G = \int_{0}^{\infty} G_{\lambda} d\lambda = \int_{0}^{5} G_{\lambda} d\lambda + \int_{5}^{10} G_{\lambda} d\lambda + \int_{10}^{20} G_{\lambda} d\lambda$$

$$G = \frac{1}{2} \times 600(5-0) + 600(10-5) + \frac{1}{2}600(20-10) = 1500 + 3000 + 3000 = 7500$$
 W/m²

Fluxo radiante absorvido:
$$G_{abs} = \int_{5}^{\infty} \alpha_{\lambda} G_{\lambda} d\lambda = \int_{0}^{5} \alpha_{\lambda} G_{\lambda} d\lambda + \int_{5}^{10} \alpha_{\lambda} G_{\lambda} d\lambda + \int_{10}^{20} \alpha_{\lambda} G_{\lambda} d\lambda$$

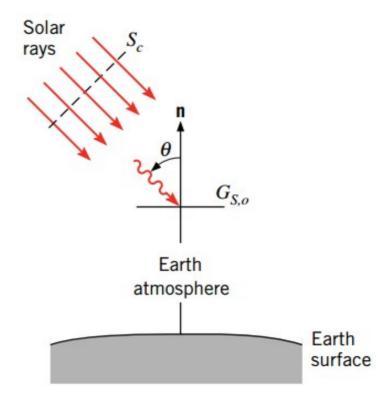
$$G_{\text{abs}} = \alpha_{\lambda 0-5} \int_{0}^{5} G_{\lambda} d\lambda + G_{\lambda 5-10} \int_{5}^{10} \alpha_{\lambda} d\lambda + \int_{10}^{20} 0 G_{\lambda} d\lambda$$

$$G_{\text{abs}} = 1 \times \frac{600 \times (5-0)}{2} + 600 \times \frac{1}{2} \text{ 0,5} (10-5) + 0 = 1500 + 750 = 2250$$
 W/m²

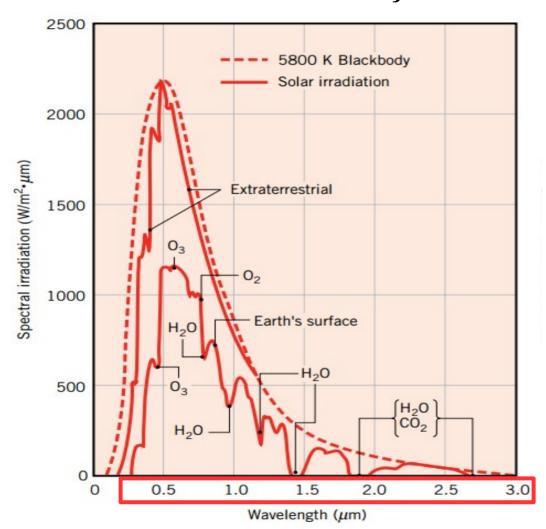
Absorvidade total:
$$\alpha = \frac{G_{\text{abs}}}{G} = \frac{2250}{7500} = 0.3$$

Radiação solar

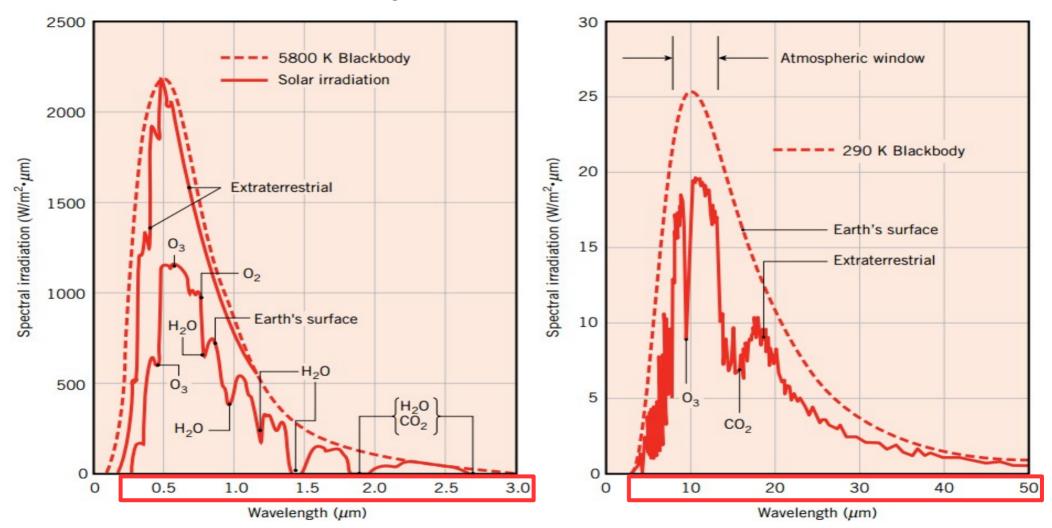
O Sol é uma fonte de radiação praticamente esférica

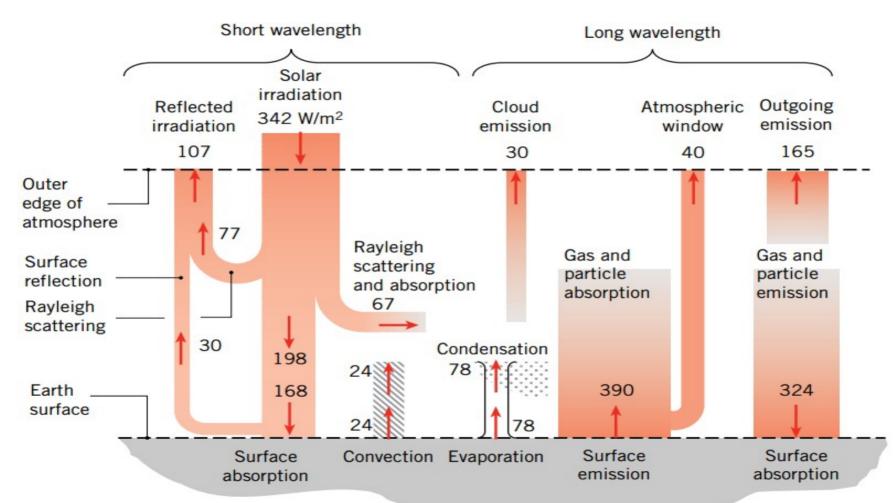

Diâmetro $D \sim 1,39 \cdot 10^9 \text{ m} = 1,39 \text{ Gm}$ Distância $L \sim 1,50 \cdot 10^{11} \text{ m} = 0,15 \text{ Tm}$ Aproximado como CN a T = 5800 KConstante solar: $S_c = 1368 \text{ W/m}^2$.

Radiação solar – feixe de raios, praticamente paralelos, que formam um ângulo de zênite θ


Irradiação solar extraterrestre

$$G_{S,e} = S_c f \cos \theta$$


0.97 < f < 1.03 – fator de correção (excentricidade da órbita)


Radiação solar e ambiental

Radiação solar e ambiental

Balanço de energia (médio no tempo) na atmosfera

